Compare commits
2 Commits
39ef0b93ea
...
2581de3dc7
| Author | SHA1 | Date | |
|---|---|---|---|
| 2581de3dc7 | |||
| d9cbe4f998 |
@@ -840,6 +840,141 @@ def _(sc, variants_high_cov_ids, variants_lost_cov_ids, variants_low_cov_ids):
|
||||
return
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(mo):
|
||||
mo.md(r"""# (3) Stats and Metadata""")
|
||||
return
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(pd):
|
||||
meta = pd.read_excel(
|
||||
"/home/darren/Documents/4_data/3_internal/2_lb/Metadata_LB_20250924.xlsx",
|
||||
index_col="fastq_id",
|
||||
)
|
||||
meta
|
||||
return (meta,)
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(clinicals, meta, pd, stats):
|
||||
# merge stats and metadata and remove seracares
|
||||
stats_meta = pd.concat([stats, meta], axis=1)
|
||||
stats_meta = stats_meta.loc[clinicals, :]
|
||||
stats_meta = stats_meta.reset_index()
|
||||
stats_meta.head()
|
||||
return (stats_meta,)
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(mo, stats_meta):
|
||||
var1 = mo.ui.dropdown(options=stats_meta.columns, label="Variable 1")
|
||||
var2 = mo.ui.dropdown(options=stats_meta.columns, label="Variable 2")
|
||||
|
||||
mo.vstack([var1, var2])
|
||||
return var1, var2
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(px, stats_meta, var1, var2):
|
||||
# note that all SE1 clinical samples are older QG extracted cfDNAs
|
||||
fig5 = px.scatter(
|
||||
data_frame=stats_meta,
|
||||
x=var1.value,
|
||||
y=var2.value,
|
||||
color="Flow cell #",
|
||||
width=700,
|
||||
height=500,
|
||||
template="simple_white",
|
||||
hover_data=["index"],
|
||||
color_discrete_sequence=px.colors.qualitative.Dark2,
|
||||
category_orders={"Flow cell #": ["SE1", "SE2"]},
|
||||
trendline="ols",
|
||||
)
|
||||
fig5.update_traces(
|
||||
marker=dict(size=9, line=dict(width=1, color="DarkSlateGrey")),
|
||||
selector=dict(mode="markers"),
|
||||
)
|
||||
fig5.add_vline(
|
||||
x=30,
|
||||
line_width=3,
|
||||
line_dash="dot",
|
||||
annotation_text="30ng",
|
||||
annotation_position="top left",
|
||||
)
|
||||
fig5.show()
|
||||
return
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(stats_meta):
|
||||
stats_meta["ng_group"] = [
|
||||
"< 30ng" if i < 30 else "> 30ng" for i in stats_meta["Input DNA used (ng)"]
|
||||
]
|
||||
return
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(pd, stats_meta):
|
||||
stats_meta_melt = pd.melt(
|
||||
stats_meta, id_vars=["index", "sample_type", "ng_group", "Flow cell #"]
|
||||
)
|
||||
stats_meta_melt.head()
|
||||
return (stats_meta_melt,)
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(mo, stats_meta_melt):
|
||||
box_vars = mo.ui.dropdown(
|
||||
options=stats_meta_melt["variable"].unique(), label="Variables to plot"
|
||||
)
|
||||
mo.hstack([box_vars])
|
||||
return (box_vars,)
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(box_vars, px, stats_meta_melt):
|
||||
fig6 = px.box(
|
||||
data_frame=stats_meta_melt.loc[
|
||||
(stats_meta_melt["variable"] == box_vars.value)
|
||||
& (stats_meta_melt["Flow cell #"] == "SE2")
|
||||
],
|
||||
color="ng_group",
|
||||
y="value",
|
||||
x="variable",
|
||||
template="simple_white",
|
||||
points="all",
|
||||
labels={
|
||||
"ng_group": "cfDNA Input for Library",
|
||||
"value": box_vars.value,
|
||||
"variable": "",
|
||||
},
|
||||
color_discrete_sequence=px.colors.qualitative.Dark2,
|
||||
category_orders={"ng_group": ["< 30ng", "> 30ng"]},
|
||||
hover_data=["index"],
|
||||
width=800,
|
||||
)
|
||||
fig6.update_traces(
|
||||
marker=dict(size=10, line=dict(width=1, color="DarkSlateGrey")),
|
||||
selector=dict(type="points"),
|
||||
)
|
||||
fig6.update_xaxes(ticks="", showticklabels=False)
|
||||
fig6.update_yaxes(showgrid=True, tickfont_size=14)
|
||||
fig6.update_legends(font_size=14)
|
||||
|
||||
for trace in fig6.select_traces():
|
||||
trace.marker.update(size=10, line=dict(width=1, color="DarkSlateGrey"))
|
||||
|
||||
fig6.show()
|
||||
return
|
||||
|
||||
|
||||
@app.cell
|
||||
def _(stats_meta):
|
||||
stats_meta["ng_group"].value_counts()
|
||||
return
|
||||
|
||||
|
||||
@app.cell
|
||||
def _():
|
||||
return
|
||||
|
||||
86
src/get_panel_coverage.py
Normal file
86
src/get_panel_coverage.py
Normal file
@@ -0,0 +1,86 @@
|
||||
import os
|
||||
from subprocess import run
|
||||
import logging
|
||||
import sys
|
||||
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s [%(levelname)s] %(message)s",
|
||||
level=logging.INFO,
|
||||
stream=sys.stderr,
|
||||
)
|
||||
|
||||
|
||||
def main(s3_paths: list[str], bed_path: str, ref_path: str, cli_bin: str) -> None:
|
||||
logging.info("Script started...")
|
||||
logging.info(f"Using reference: {ref_path}")
|
||||
logging.info(f"Using bed file: {bed_path}")
|
||||
logging.info(f"Number of BAM/CRAMs to process: {len(s3_paths)}")
|
||||
logging.info(f"BAM/CRAMs to process: {s3_paths}")
|
||||
|
||||
for idx, file in enumerate(s3_paths):
|
||||
name = file.split("/")[-1]
|
||||
file_num = f"{idx+1}/{len(s3_paths)}"
|
||||
|
||||
logging.info(f"({file_num}) Downloading file: {name}")
|
||||
down_cmd = (
|
||||
f"{cli_bin} s3 cp {file} . --profile=se"
|
||||
if cli_bin == "aws"
|
||||
else f"{cli_bin} get {file} ."
|
||||
)
|
||||
run(down_cmd, shell=True, capture_output=False)
|
||||
|
||||
sort_name = f"{name.split('.')[0]}.sorted.cram"
|
||||
sort_cmd = f"samtools sort -@ 18 {name} --reference {ref_path} > {sort_name}"
|
||||
run(sort_cmd, shell=True, capture_output=False)
|
||||
|
||||
logging.info(f"({file_num}) Getting coverage for '{name}'")
|
||||
cov_cmd = (
|
||||
f"bedtools coverage -d -sorted -a {bed_path} -b {sort_name} | "
|
||||
f"python parse_cov.py > {name.split(".")[0]}_cov.json"
|
||||
)
|
||||
run(cov_cmd, shell=True, capture_output=False)
|
||||
os.remove(name)
|
||||
os.remove(sort_name)
|
||||
|
||||
logging.info(f"({file_num}) Processing of '{name}' completed!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
s3_paths = [
|
||||
# "s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-25-0001-pa-21Mar2025_S33.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-25-0002-pa-21Mar2025_S34.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-25-0003-pa-21Mar2025_S35.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-25-0004-pa-21Mar2025_S36.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-25-0005-pa-21Mar2025_S37.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-25-0006-pa-21Mar2025_S38.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0d125pc-1-28Mar2025_S41.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0d125pc-2-28Mar2025_S42.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0d25pc-1-28Mar2025_S43.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0d25pc-2-28Mar2025_S44.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0d5pc-1-28Mar2025_S45.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0d5pc-2-28Mar2025_S46.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0pc-1-28Mar2025_S39.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-0pc-2-28Mar2025_S40.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-1pc-1-28Mar2025_S48.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se1-prd-2.1.1/LB-SeraPlasma-1pc-2-28Mar2025_S47.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0007-pa-1-23May2025_S20.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0007-pa-2-23May2025_S21.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0008-pa-1-23May2025_S22.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0008-pa-2-23May2025_S23.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0009-pa-1-23May2025_S24.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0009-pa-2-23May2025_S25.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0010-pa-1-23May2025_S26.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0010-pa-2-23May2025_S27.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0011-pa-1-23May2025_S32.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0012-pa-1-23May2025_S28.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0012-pa-2-23May2025_S29.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0032-pa-1-23May2025_S30.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-25-0032-pa-2-23May2025_S31.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-SeraCare-0d25pc-1-21Mar2025_S17.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-SeraCare-0d25pc-2-21Mar2025_S18.collapsed.cram",
|
||||
"s3://serenomica-pipeline-archive/se2-lb-1/LB-SeraPlasma-0pc-3-28Mar2025_S19.collapsed.cram",
|
||||
]
|
||||
# "/home/darren/Documents/4_data/3_internal/1_panels/TWIST/twist_LB_probes_plus_30bp_merged.sorted.bed"
|
||||
bed_path = "/home/darren/Documents/4_data/3_internal/1_panels/TWIST/twist_LB_probes_plus_30bp_merged.sorted.bed"
|
||||
ref_path = "/home/darren/Documents/4_data/1_genomes/human/hg38/Homo_sapiens_assembly38.fasta"
|
||||
main(s3_paths, bed_path, ref_path, cli_bin="aws")
|
||||
11
src/parse_cov.py
Normal file
11
src/parse_cov.py
Normal file
@@ -0,0 +1,11 @@
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
import json
|
||||
|
||||
data = defaultdict(lambda: [])
|
||||
|
||||
for line in sys.stdin:
|
||||
chrom, start, stop, _, depth = line.rstrip().split("\t")
|
||||
data[f"{chrom}_{start}_{stop}"].append(depth)
|
||||
|
||||
print(json.dumps(dict(data)))
|
||||
Reference in New Issue
Block a user