feat: furtehr analysis added

This commit is contained in:
2025-09-24 18:15:18 +02:00
parent 39ef0b93ea
commit d9cbe4f998

View File

@@ -840,6 +840,141 @@ def _(sc, variants_high_cov_ids, variants_lost_cov_ids, variants_low_cov_ids):
return
@app.cell
def _(mo):
mo.md(r"""# (3) Stats and Metadata""")
return
@app.cell
def _(pd):
meta = pd.read_excel(
"/home/darren/Documents/4_data/3_internal/2_lb/Metadata_LB_20250924.xlsx",
index_col="fastq_id",
)
meta
return (meta,)
@app.cell
def _(clinicals, meta, pd, stats):
# merge stats and metadata and remove seracares
stats_meta = pd.concat([stats, meta], axis=1)
stats_meta = stats_meta.loc[clinicals, :]
stats_meta = stats_meta.reset_index()
stats_meta.head()
return (stats_meta,)
@app.cell
def _(mo, stats_meta):
var1 = mo.ui.dropdown(options=stats_meta.columns, label="Variable 1")
var2 = mo.ui.dropdown(options=stats_meta.columns, label="Variable 2")
mo.vstack([var1, var2])
return var1, var2
@app.cell
def _(px, stats_meta, var1, var2):
# note that all SE1 clinical samples are older QG extracted cfDNAs
fig5 = px.scatter(
data_frame=stats_meta,
x=var1.value,
y=var2.value,
color="Flow cell #",
width=700,
height=500,
template="simple_white",
hover_data=["index"],
color_discrete_sequence=px.colors.qualitative.Dark2,
category_orders={"Flow cell #": ["SE1", "SE2"]},
trendline="ols",
)
fig5.update_traces(
marker=dict(size=9, line=dict(width=1, color="DarkSlateGrey")),
selector=dict(mode="markers"),
)
fig5.add_vline(
x=30,
line_width=3,
line_dash="dot",
annotation_text="30ng",
annotation_position="top left",
)
fig5.show()
return
@app.cell
def _(stats_meta):
stats_meta["ng_group"] = [
"< 30ng" if i < 30 else "> 30ng" for i in stats_meta["Input DNA used (ng)"]
]
return
@app.cell
def _(pd, stats_meta):
stats_meta_melt = pd.melt(
stats_meta, id_vars=["index", "sample_type", "ng_group", "Flow cell #"]
)
stats_meta_melt.head()
return (stats_meta_melt,)
@app.cell
def _(mo, stats_meta_melt):
box_vars = mo.ui.dropdown(
options=stats_meta_melt["variable"].unique(), label="Variables to plot"
)
mo.hstack([box_vars])
return (box_vars,)
@app.cell
def _(box_vars, px, stats_meta_melt):
fig6 = px.box(
data_frame=stats_meta_melt.loc[
(stats_meta_melt["variable"] == box_vars.value)
& (stats_meta_melt["Flow cell #"] == "SE2")
],
color="ng_group",
y="value",
x="variable",
template="simple_white",
points="all",
labels={
"ng_group": "cfDNA Input for Library",
"value": box_vars.value,
"variable": "",
},
color_discrete_sequence=px.colors.qualitative.Dark2,
category_orders={"ng_group": ["< 30ng", "> 30ng"]},
hover_data=["index"],
width=800,
)
fig6.update_traces(
marker=dict(size=10, line=dict(width=1, color="DarkSlateGrey")),
selector=dict(type="points"),
)
fig6.update_xaxes(ticks="", showticklabels=False)
fig6.update_yaxes(showgrid=True, tickfont_size=14)
fig6.update_legends(font_size=14)
for trace in fig6.select_traces():
trace.marker.update(size=10, line=dict(width=1, color="DarkSlateGrey"))
fig6.show()
return
@app.cell
def _(stats_meta):
stats_meta["ng_group"].value_counts()
return
@app.cell
def _():
return